Büyük Patlama Karadelikler Evrenin Evrimi

235

Friedmann’ın ilk evren modelinde dördüncü boyut olan zamanın uzay gibi genişlemesi sonludur. Zaman, iki ucu ya da sınırı olan bir çizgiye benzer. Zamanın sonu olduğuna göre, bir başlangıcı da olmalıdır. Aslında, Einstein’ın evrende belli miktarda madde olduğunu söyleyen denklemlerinin bütün çözümlemelerinin çok önemli bir özelliği paylaştığını görüyoruz; geçmişte bir zamanda (yaklaşık 13,7 milyon yıl önce) komşu galaksiler arasındaki uzaklık sıfır olmalıydı. Bir başka deyişle, bütün evren sıfır büyüklüğündeki tek bir noktaya sıfır yarıçaplı bir küreye sıkışmıştı. O zaman evrenin yoğunluğu ve uzay-zamanın eğriliği sonsuz olmalıydı. Bu, büyük patlama dediğimiz zamandır. Kozmolojiye ait bütün kuramlarımız, uzay-zamanın hareketsiz ve neredeyse düz olduğu varsayımlarına göre formüle edilmişlerdi. Böylece bütün bu kuramlarımız büyük patlamayla yerle bir oldu: Sonsuz eğiklikte bir evrene hemen hemen düz demek mümkün değildir! Büyük patlamadan önce olaylar meydana gelmiş olsa bile, bu kuramları daha sonra ne olacağını belirlemekte kullanamayız, çünkü büyük patlamayla birlikte önceden kestirilebilirlik ortadan kalkar. Aynı şekilde, şimdiki gibi, sadece büyük patlamadan sonra olanları bilsek de, patlama öncesinde neler olduğunu saptayanlayız. Kanımızca büyük patlamadan önce olanların bir sonucu yoktur ve bu nedenle evrenin bilimsel modelinin parçası olamazlar. Bu nedenle patlama öncesini model dışında bırakıp, zamanın başlangıcının büyük patlama olduğunu söyleyebiliriz. Bu demektir ki, büyük patlamanın koşullarını kim hazırladı türünden sorular, bilimin ilgilendiği türde sorular değildir.

Evren sıfır büyüklüğündeyse ortaya çıkan bir diğer sonsuzluk sıcaklıktır. Büyük patlama sırasında evrenin sonsuz sıcaklıkta olduğu düşünülüyor. Evren genişledikçe ışınımın ısısı düşmüştür. Isı basit bir şekilde, parçacıkların ortalama enerjisinin ya da hızının ölçüsü olduğundan, evrenin soğuma sürecinin, evrenin içindeki madde üzerinde etkisi çok büyük olmuştur. Çok yüksek ısılarda parçacıklar o kadar hızlı hareket ederler ki, birbirlerinin çekim alanlarından kaçabilirler ve bu durum sonuçta nükleer ya da elektromanyetik kuvvetlerin ortaya çıkmasına neden olur; ancak soğumakta olan parçacıkların bir küme oluşturmaya başlamak üzere birbirlerini çekmeleri beklenir. Evrende bulunan parçacıkların türleri bile ısıya ve dolayısıyla evrenin yaşına bağlıdır. Aristoteles, maddenin parçacıklardan oluştuğuna inanmıyordu. Maddenin sürekli olduğuna inanıyordu. Yani ona göre bir madde parçası sonsuza kadar daha küçük parçalara bölünebilirdi; daha küçük bir parçaya bölünemeyecek madde parçası olamazdı. Ancak, Demokritos gibi birkaç Yunanlı, maddenin özünde zerreciklerden oluştuğunu ve her şeyin çok sayıda ve farklı türlerdeki atomlardan yapıldığını savunuyorlardı. (Yunancada atom sözcüğü, “bölünemez” demektir.) Günümüzde bunun doğru olduğunu biliyoruz; en azından kendi çevremizde ve evrenin şimdiki durumunda bu doğru. Ancak evrenin atomları ne her zaman vardı ne de bölünemezdi ve evrendeki
parçacıkların ancak küçük bir bölümünü temsil ediyorlardı.

Atomlar, elektron, proton ve nötron denilen daha küçük parçacıklardan oluşur. Protonlar ve nötronlar, kuvark denilen daha da küçük parçacıklardan oluşur. Dahası, bu her bir atomaltı parçacığa denk düşen bir karşıt parçacık vardır. Karşıt parçacıklar, kardeş parçacıklarıyla aynı kütleye sahiptir, ama yükleri ve diğer özellikleri zıttır. Örneğin, bir elektronun karşıt parçacığına pozitron denir, elektronun karşıtı olarak pozitif yüklüdür. Karşıt parçacıklardan yapılmış karşıt dünyalar ve karşıt insanlar olabilir. Ancak bir parçacıkla karşıt parçacık karşılaştıklarında birbirlerini yok ederler. Yani, eğer karşıt benliğinizle karşılaşırsanız, el sıkışmayın, büyük bir ışık patlaması içinde ikiniz de kaybolabilirsiniz!
Işık enerjisi bir başka tür parçacıktır; bu kütlesiz parçacığa foton denir. Yakınımızdaki Güneş’in nükleer ocağı, dünyanın en büyük foton kaynağıdır. Güneş aynı zamanda bir başka tür parçacığın, daha önce sözünü ettiğimiz nötrinonun (ve antinötrinonun) da en büyük kaynaklarından biridir. Fakat bu olağanüstü hafif olan parçacıklar maddeyle etkileşime giremez ve dolayısıyla her saniye milyonlarca nötrino bizi hiç etkilemeden içimizden geçip gider. Bütün olarak fizikçiler düzinelerce temel parçacık keşfetmiştir. Zamanla, evren karmaşık bir evrim geçirirken, bu farklı yapılardaki parçacıkların özellikleri de evrimleşti. Dünya gibi bir gezegenin ve bizim varlığımızın nedeni işte bu evrimdir. Büyük patlamadan bir saniye sonra evren, ısının on milyar santigrat düşmesine yetecek kadar genişledi. Bu, Güneş’in merkezindeki ısının bin katıdır ve bu derece yüksek ısdara ancak hidrojen bombasının patlamasında ulaşılır. Bu şurada evrende daha çok fotonlar, elektronlar, nötrinolar ve bunların karşıt parçacıklarıyla birlikte, bir miktar proton ve nötron vardı. Bu parçacıkların enerjisi o kadar büyük oldu ki, çarpıştıklarında pek çok farklı parçacık-karşıt parçacık çiftleri yarattılar. Örneğin, çarpışan fotonlar bir proton ve onun karşıt parçacığı pozitronu yaratabilirdi. Bu yeni oluşan parçacıklar, karşıt parçacık olan kardeşleriyle çarpışır ve yok olurlar. Bir elektron bir pozitronla her karşılaştığında, ikisi de yok olur; ancak bunun tersi olan süreç o kadar kolay değildir; iki kütlesiz parçacığın, örneğin fotonların elektron ve pozitron yaratması gibi, bir parçacık-karşıt parçacık çifti yaratması için, çarpışan kütlesiz parçacıkların asgari düzeyde enerjisinin olması gerekir. Çünkü bir elektronun ve pozitronun kütlesi vardır ve yeni yaratılmış olan bu kütlenin, çarpışan parçacıkların enerjisinden doğması gerekir. Evren genişlediği ve ısı düştüğü sürece elektron-pozitron çiftlerini yaratabilecek enerjiyle dolu çarpışmalar, çiftlerin birbirini yok etme hızının çok daha altında gerçekleşir. Böylece elektron ve pozitron çiftlerinin çoğu, daha çok foton üretmek üzere birbirini yok eder, geriye oldukça az elektron kalır. Nötrino ve antinötrinoların, birbirleriyle ve başka parçacıklarla etkileşimleri çok zayıf olduğu için, birbirlerini pek yok etmez. Dolayısıyla bugün hâlâ var olmaları gerekir. Onları gözlemleyebilseydik, evrenin bu çok sıcak olan ilk evresi hakkında iyi bir ölçütümüz olabilirdi, ancak ne yazık ki, milyarlarca yıl soma enerjileri doğrudan gözlemlenemeyecek kadar azalmış olmalı (ama belki de onları dolaylı olarak saptayabiliriz).

Büyük patlamadan yaklaşık yüz saniye sonra evrenin sıcaklığı bir milyar dereceye, en sıcak yıldızların içlerindeki sıcaklığa düşer. Bu sıcaklıkta, büyük kuvvet demlen bir kuvvet çok önemli bir rol oynayacakta  büyük kuvvet, proton ve nötronların birbirlerine bağlanıp, çekirdeği oluşturmalarım sağlayan kısa erimli bir çekim kuvvetidir. Yeterince yüksek ısıda, protonlar ve nötronlar hareket etmelerine ve böylece çarpışmalarından özgür ve başına buyruk bir şekilde çıkmalarına yetecek enerjiye sahip olurlar. Ancak bir milyar derecelik bir ısıda, büyük kuvvetin çekimiyle başa çıkabilmelerine yetecek enerjiye sahip olamazlar ve döteryum (ağır hidrojen) atomunun (bir proton ve bir nötron içerir) çekirdeğini oluşturmak üzere birbirlerine bağlanmaya başlarlar; ayrıca lityum ve berilyum gibi bazı ağır elementleri de oluştururlar. Sıcak büyük patlamada, protonların ve nötronların yaklaşık dörtte birinin helyum çekirdeğinin yanı sıra küçük bir miktar ağır hidrojene ve başka elementlere dönüştüğü de hesaba katılabilir. Geriye kalan nötronlar, sıradan hidrojen atomunun çekirdeğini oluşturmak üzere bozunarak protonlara dönüşür.

Evrenin bu sıcak erken dönenimin tablosu ilk kez 1948’de, Georges Gamov ve öğrencisi Ralph Alpher tarafından ünlü bir gazetede yayımlandı. Gamov çok şakacı biriydi; nükleerbilimci Hans Bethe’yi makalenin altına ismini koymaya ikna ederek, makalenin yazar listesini, tıpkı Yunan alfabesinin ilk üç harfi, alfa, beta, gama gibi, Alpher, Bethe, Gamov olarak yayımlattı. Bu evrenin başlangıcından söz eden bir makale için çok uygun üsteydi! Bu makalede olağanüstü bir kestirimde bulunarak, evrenin çok sıcak erken dönemlerinden gelen ışınımın günümüzde hâlâ var olabileceğini, ancak sıcaklığının mutlak sıfırın birkaç derece üzerine kadar düşmüş olabileceğim yazdılar. (Mutlak sıfir, -273 °C, maddenin hiç ısı enerjisi taşımadığı mümkün olan en düşük ısıdır.) Penzias ve Wilson’un 1965’te buldukları işte bu mikrodalga ışınımıydı. Alpher, Bethe ve Gamov’un bu makaleyi yazdıkları sırada proton ve nötronlann çekirdeksel tepkimelerine dair pek bir şey bilinmiyordu. Evrenin erken dönemlerindeki değişik elementlerin oranlarına ilişkin o dönemde yapılan hesaplar oldukça hatalıydı; ancak bu hesaplar gelişen bilgilerimizin ışığında yeniden yapılmış ve artık gözlemlerle de tutarlı hale gelmiştir. Dahası, evrendeki maddenin dörtte birinin neden helyum olduğunu anlatmanın bir başka yolunu bulmak çok zor. Ancak bu tablonun da sorunları var. Sıcak büyük patlama modelinde, evrenin ilk döneminde ısının bir bölgeden diğerine akmasına yetecek zaman yoktu. Bu demektir ki, evrenin ilksel aşamasında her yerdeki ısı tamamen aynı derecedeydi; fon mikrodalganın baktığımız her yerde aynı sıcaklıkta olduğu gerçeğini açıklayabilmenin yolu bu. Dahası, genişlemenin başlama hızı kesin olarak belirlenmeliydi ki, çökmeden sakınmak için gereken kritik hıza yakınlaşabilsin.

Evrenin niçin bu şekilde başladığını, bizim gibi varlıkları yaratmaya niyetlenen Tanrı’nın işi olarak görmenin dışında, açıklamak çok zor. Massachusetts Teknoloji Enstitüsü’nde çalışan bir bilimci olan Alan Guth, çok sayıda değişik ilksel durum modelinin arasında, evrimleşerek bugünküne benzer bir evren yaratabilecek olan modeli bulmaya çalışırken, evrenin başlangıçta çok hızlı bir genişleme sürecinden geçmiş olabileceğini öne sürdü. Bunun şişmeye benzer bir genişleme olduğu söylenebilir; yani bu, evren bir anda artan bir hızla genişledi demektir. Guth’a göre, evrenin yarıçapı, saniyenin küçücük bir bölümünde milyon kere milyon kere milyon kere milyon kere milyon kat (l’den sonra otuz sıfır) artmıştı. Evrendeki her düzensizlik bu genişlemenin etkisiyle düzelmiştir, tıpkı balonun üzerindeki kırışıklıkların şişirildikçe kaybolması gibi. Böylelikle şişme, evrenin bugünkü düzgün ve tekbiçimli durumuna, pek çok farklı ve tekbiçimli olmayan başlangıç durumlarından evrimleşerek nasıl geldiğini açıklar. Bu durumda, elimizde oldukça doğru bir evren tablosu olduğuna güvenebiliriz; en azından büyük patlamadan sonra bir saniyenin milyarda-trilyonda birine kadar geri gidebiliyoruz. Bu başlangıç kargaşasından sonra, büyük patlamanın ilk birkaç saati içinde, helyum ve lityum gibi bazı elementlerin oluşumu durur. Bundan sonra, yaklaşık bir milyon yıl boyunca evren, pek başka bir şey olmadan genişlemeyi sürdürür. Nihayet, ısı birkaç bin dereceye düştüğünde, elektronlar ve çekirdekleri aralarındaki elektromanyetik çekimle başa çıkabilecekleri enerjiye artık sahip olmadıklarında, atomları oluşturmak üzere birleşmeye başlar. Evren bir bütün olarak genişlemeye ve soğumaya devam ederken, ortalamadan birazcık daha yoğun olan bazı bölgelerdeki ekstra kütleçekimi yüzünden genişleme yavaşlar. Bu çekim, sonunda bazı bölgelerde genişlemeyi durdurur ve çökmelerine neden olur. Bu bölgeler çökerken, bu bölgelerin dışında kalan maddenin kütleçekimi, çöken bölgelerin yavaşça dönmeye başlamasına neden olabilir. Çöken bölge küçüldükçe daha hızlı dönmeye başlar; tıpkı buz patencisinin buzun üzerinde dönerken kollarını kapatmasıyla daha hızlı dönmeye başlaması gibi. Sonunda, bölge yeterince küçüldüğünde, kütleçekimi kuvvetini  dengelemeye yetecek kadar hızlı dönmeye başlar ve böylece disk biçiminde dönen galaksiler doğar. Bu dönüş hareketine başlayamayan diğer bölgeler, elips galaksi denilen oval biçimli nesneleri oluşturur. Buralarda çökme durur, çünkü galaksinin tümü dönmez, tek tek parçalar galaksinin merkezi etrafında döner. Zaman geçtikçe, galaksilerdeki hidrojen ve helyum gazları, kütleçekimlerinin altında çökerek, daha küçük bulutlara ayrılır. Bulutlar büzüldükçe ve içlerindeki atomlar birbirleriyle çarpıştıkça gazın sıcaklığı, nükleer kaynaşma tepkimesini başlatmaya yetecek kadar artar. Bu durumda hidrojen daha fazla helyuma dönüşür. Bu tepkime sonucu açığa çıkan ısı, kontrollü hidrojen bombası patlamalarında olduğu gibi, yıldızın parlamasına yol açar. Isının artması gazın basıncını, kütleçekimi kuvvetini dengeleyinceye kadar artırır ve gaz artık büzülmez. Bu durumda, birleşen bulutlar Güneşimize benzeyen yıldızları meydana getirir, hidrojeni yakıp helyuma dönüştürür ve çıkan enerjiyi ısı ve ışık olarak yayar. Bu bir balonun durumuna benzer; balonu genişletmeye çalışan içindeki havanın basıncıyla, balonun küçülmesini isteyen lastiğin gerilimi arasında bir denge vardır Bulutlar yıldızlan oluşturmak üzere bir kez birleştiğinde, kütleçekimi kuvvetini dengeleyen nükleer tepkimeden kaynaklanan ısı sayesinde yıldızlar uzun süre kararlı durumlarını korur. Yine de sonunda, yıldızın hidrojeni ve diğer nükleer yakıttan tükenir.

Bir yıldızın, harekete geçiren yakıt miktarının çokluğu oranında kısalan bir sürede tükenecek olması bir paradokstur. Daha kütleli yıldızların kütleçekimi kuvvetini dengeleyebilmek için daha çok ısıya gerek duymaları buna yol açar. Yıldız ne kadar sıcaksa, nükleer kaynaşma tepkimesi o kadar hızlı olur ve çok geçmeden yıldız yakıtını tüketir. Güneşimizin bir beş milyar yıl daha sürmesine yetecek kadar yakıtı olduğu tahmin ediliyor; ancak daha yoğun kütleli yıldızlar yakıtlarını evrenin yaşından çok daha kısa bir sürede, yaklaşık yüz milyon yıl içinde tüketebilirler.

Bir yıldızın yakıtı tükendiğinde soğumaya başlar ve kütleçekimi kuvveti baskın çıkarak büzülmeye yol açar. Bu büzülme atomları sıkıştırır ve yıldızın yeniden ısınmasına neden olur. Yıldız ısındıkça, helyumu, karbon ve oksijen gibi daha ağır elementlere dönüştürmeye başlar. Ancak bu durumda çok fazla enerji açığa çıkmayacağı için bir sorunla yüz yüze kalınacaktır. Bundan sonra ne olacağı tümüyle açık değil, ancak yıldızın merkezine yakın bölgelerin çökerek, kara delik gibi çok yoğun bir duruma geçmesi mümkündür. “Kara delik” kavramı daha çok yenidir. 1969’da, Amerikalı bilimci John Wheeler tarafından, en azından iki yüzyıl öncesine dayanan bir düşüncenin grafik tanımı olarak yaratılmıştır. O dönemde ışık hakkında iki kuram vardı: biri Newton’un onayladığı, ışığın parçacıklardan oluştuğunu söyleyen kuram, diğeri de ışığın dalgalardan oluştuğunu söyleyen kuram. Biz artık iki kuramın da doğru olduğunu biliyoruz. Kuvantum mekaniğinin dalga-parçacık ikiliğine göre, ışığın hem dalga, hem de parçacık olduğu söylenebilir. Dalga ve parçacık gibi tanımlamalar insanların yarattığı, doğanın, bütün bir fenomeni, kategorilerden birine ya da diğerine indirgeyerek uymak zorunda olmadığı kuramlardır!

Işığın dalgalardan oluştuğunu söyleyen kuramda, ışığın kütleçekimi kuvvetine nasıl tepki verdiği açık değildir. Ancak ışığın parçacıklardan meydana geldiğini düşünürsek, bu parçacıkların kütleçekimi kuvvetinden tıpkı top gülleleri, roketler ve gezegenler gibi etkilenmesini bekleriz. Özellikle de bir top güllesini yerden gökyüzüne doğru ateşlediğinizde, tıpkı roket gibi, yükselmeye başladığı hız belli bir değeri aşmıyorsa, sonunda durur ve geri düşmeye başlar. Bu en düşük hıza, kurtulma hızı denir. Bir yıldızın kurtulma hızı, kütleçekimi kuvvetinin çekme gücüne bağlıdır. Yıldızın kütlesi ne kadar büyükse, kurtulma hızı da o ölçüde büyüktür. Başlangıçta ışık parçacıklarının sonsuz hızda yol aldığı ve bu yüzden kütleçekimi kuvvetinin bu parçacıkları yavaşlatmayacağı düşünüldü; ancak Roemer’in ışığın hızının sonlu olduğunu keşfetmesiyle, kütleçekimi kuvvetinin önemli bir etkisinin olabileceği anlaşıldı; eğer yıldız yeterli kütleye sahipse, ışığın hızı, yıldızın kurtulma hızından daha düşük olabilirdi ve yıldızdan gelen ışık, yıldıza geri dönebilirdi. Bu varsayım üzerine 1783’te, Cambridge’te öğretim üyesi olan John Michell, Philosophical Transactions of Royal Society of London dergisinde yayımlanan makalesinde, yeterli kütleye sahip ve yoğun bir yıldızın, ışığın kurtulamayacağı güçte bir kütleçekimi alanına sahip olacağını belirtti. Yıldızın yüzeyinden yayılan her ışık, daha uzaklaşamadan yıldızın kütleçekimiyle geri sürüklenecekti. Böyle nesnelere artık kara delik diyoruz, çünkü gerçekte oldukları şey bu: Uzaydaki kara boşluklar.

Birkaç yıl sonra, Fransız bilimci Laplace Markisi, görünüşe bakılırsa Michell’den bağımsız olarak benzeri bir sav ileri sürdü. İlginç olan, Laplace bu savına Exposition du systeme du monde adlı kitabının ilk ve ikinci basımlarında yer verdi, daha sonraki basımlarında bu sav yer almıyordu. Belki de bunun çılgınca bir düşünce olduğuna karar vermişti; ışığın parçacık kuramı XIX. yüzyılda artık tutulmuyordu, çünkü dalga kuramıyla her şey açıklanabilirmiş gibi görünüyordu. Aslında, Newton’un kütleçekimi kuramında ışığı top gülleleri gibi ele almak tutarlı olmaz, çünkü ışığın hızı sabittir. Yeryüzünden yukarı doğru ateşlenen bir top güllesi kütleçekimi kuvveti yüzünden yavaşlayacak, sonunda duracak ve geri düşecektir; bir foton ise yukarı doğru sabit bir hızla gitmeyi sürdürür. Kütleçekimi kuvvetinin ışığı nasıl etkilediğini açıklayan tutarlı bir kuram, Einstein’ın genel göreliliği ileri sürdüğü 1915 yılına kadar ortaya çıkmadı; genel göreliliğe göre yoğun kütleli bir yıldıza ne olacağıyla ilgili sorun, ilk kez 1939’da, genç bir Amerikalı olan Robert Oppenheimer tarafından çözüldü.

Oppenheimer’ın çalışmalarıyla ortaya çıkan tablo şöyle: Yıldızın kütleçekimi alanı, ışık ışınlarının uzay-zamanda geçtikleri yollan, yıldızın var olmadığı zamana göre değiştirir. Bu etki, Güneş tutulması sırasında gözlemlenen uzak yıldızlardan gelen ışığın bükülmesinde görülür. Uzay ve zaman içinde ışığın izlediği yol, yıldızın yüzeyine yakın yerlerde hafifçe içe doğru bükülür. Yıldız büzüldükçe daha da yoğunlaşır ve yüzeyindeki kütleçekimi alanı daha da güçlenir. (Kütleçekimi alanının, yıldızın merkezindeki bir noktadan yayıldığını düşünebilirsiniz; yıldız büzüldükçe, yüzeydeki noktalar merkeze daha da yakınlaşır ve böylece daha güçlü alanlar olarak hissedilir.) Daha güçlü alanlar, ışık yollarının yüzeye yakın yerlerde daha çok içe bükülmelerine neden olur. Nihayet, yıldız belli kritik yarıçapa kadar büzüldüğünde yüzeyindeki kütleçekimi alanı o kadar güçlenir ki, ışık yolları içe doğru, ışığın artık kaçamayacağı bir noktaya kadar bükülür.

Görelilik kuramına göre hiçbir şey ışık kadar hızlı yol alamaz. Yani, ışık kurtulamıyorsa, hiçbir şey kurtulamaz; her şey kütleçekimi alanı tarafından geriye doğru sürüklenir. Çökmüş bir yıldız, uzay-zamanda bir bölge oluşturur ve bu bölgeden kurtulup, uzaktaki gözlemciye ulaşmak mümkün değildir. Bu bölge kara deliktir. Kara deliğin dış sınırına olay ufku denir. Bugün, görünen ışık yerine X-ışınına ve gama ışınlarına odaklanmış olan
Hubble Uzay Teleskopu’na ve diğer teleskoplara minnettarız; artık kara deliklerin yaygın -insanların başlangıçta düşündüklerinden çok daha yaygınbir fenomen olduğunu biliyoruz. Bir uydu, uzayın tek bir küçük bölgesinde bin beş yüz kara delik saptadı. Ayrıca galaksimizin merkezinde de, Güneşimizden milyon kat büyük kütleli bir kara delik olduğunu da keşfettik. Bu olağanüstü kütleli kara deliğin, yörüngesinde ışık hızının yüzde ikisi kadar bir hızda dönen bir yıldızı var; yani, bir atom çekirdeğinin etrafında dönen bir elektronun ortalama hızından daha hızlı dönen bir yıldız!

Bir yıldızın çökerek bir kara delik oluşturmasını izlersek, gördüklerimizi anlayabilmek için, görelilik kuramında mutlak zamanın olmadığını anımsamamız gerekir. Bir başka deyişle, her gözlemci kendi zaman ölçüsüne sahiptir. Bir yıldızın yüzeyinde duran biri için zamanın akışı, uzaktaki birine göre farklıdır, çünkü yıldızın yüzeyindeki kütleçekimi alanı daha güçlüdür. içe doğru çökmekte olan bir yıldızın yüzeyinde cesur bir astronot olduğunu varsayalım. Astronotun saatine göre belli bir zamanda diyelim ki ll’de- yıldız büzülerek kritik yarıçapın altına inecek ve kütleçekimi alanı hiçbir şeyin kurtulamayacağı kadar güçlenecek. Astronotun aldığı talimatlar uyarınca, yıldızın merkezine sabit bir uzaklıkta dön mekte olan uzay gemisine her saniye bir sinyal gönderdiğini varsayalım.

Astronot 10:59:58’de, yani ll’den iki saniye önce sinyal göndermeye başlar. Uzay gemisindeki arkadaşlarının sinyal kayıtları ne olur? Daha önce, roketle yaptığımız düşünce deneyinden, kütleçekimi kuvvetinin zamanı yavaşlattığım biliyoruz; kütleçekimi güçlendikçe, etkisi de güçlenecektir. Yıldızın yüzeyindeki astronot, yörüngedeki arkadaşlarından daha güçlü bir kütleçekimi alanında bulunmaktadır; böylece astronotun saatinin bir saniyesi, diğerlerinin saatine göre bir saniyeden uzun olacaktır.
Ve yıldız içe doğru çökmeye başladığında, astronotun deney alanı gittikçe güçlenecek, gönderdiği sinyallerin aralıkları, uzay gemisindekiler için gittikçe uzayacaktır. Bu zaman uzaması 10:59:59’dan önce çok küçük olabilir ve gemideki astronotlar 10:59:58’de gönderilen sinyalle, bir sonrakisinyal arasında birazcık fazla bekleyebilir. Ancak 11 sinyali için sonsuza kadar beklemeleri gerekecektir.
Yıldızın yüzeyine 10:59:59 ile 11 arasında (astronotun saatine göre) olanlar, uzay gemisine göre sonsuz bir zaman dilimine yayılacaktır. Saat 11’e yaklaşırken, yıldızdan ardı ardına gelen her ışık dalgasının tepesi ve çukuru arasındaki mesafe, tıpkı astronotun yolladığı sinyallerin aralıkları gibi, gitgide uzayacaktır. Işığın frekansı, bir saniyedeki dalgalarının tepelerinin ve çukurlarının sayısına eşit olduğuna göre, uzay ge-misindekiler için yıldızdan gelen ışığın frekansı gittikçe yavaşlayacaktır. Böylece yıldızın ışığı gitgide kızıllaşacak (ve gitgide sönükleşecek-tir). Sonunda yıldız o kadar sönükleşecektir ki, uzay gemisinden artık görülemeyecektir; yıldızdan geriye kalan sadece uzayda bir kara delik olacaktır. Yine de kara delik, yörüngesinde dönmekte olan uzay gemisine aynı kütleçekimi kuvvetini uygulamayı sürdürecektir.

Bu senaryo tümüyle gerçekçi değil, çünkü bir sorunu var. Yıldızdan uzaklaştıkça kütleçekimi zayıflar; yani cesur astronotumuzun ayaklarını etkileyen kütleçekimi kuvveti, başını etkileyenden her zaman daha güçlü olacaktır. Kuvvetler arasındaki bu fark onun ya bir spagetti gibi uzamasına yol açacak ya da yıldız, olay ufkunun oluşturduğu kritik yarıçapa ulaşamadan parçalayacaktır! Yine de evrende, galaksilerin merkez bölgeleri gibi çok daha büyük nesnelerin olduğunu biliyoruz; bunlar da, tıpkı bizim galaksimizin merkezindeki kara delik gibi, kara delikler oluşturmak üzere kütleçekimi çöküntüsüne uğrayabilirler. Bunlardan birinin üzerindeki bir astronot, kara delik oluşmadan önce parçalanmayacaktır. Aslında, kritik yarıçapa ulaştığında hiçbir farklılık hissetmeyecek ve dönüşü olmayan noktayı hiç fark etmeden geçecektir; ancak bunun dışında kalanlar için astronotun yolladığı sinyallerin aralığı gittikçe uzayacak ve sonunda gelmez olacaktır. Ve birkaç saat içinde (astronotun saatine göre) bölge çökmeyi sürdürdükçe, astronotun başındaki ve ayaklarındaki kütleçekimi farklılığı
öylesine güçlenecektir ki, parçalanmaktan kurtulamayacaktır. Bazen, çok büyük kütleli bir yıldız çöktüğünde, yıldızın dış bölgeleri, supernova denilen muazzam bir patlamayla parçalanabilir. Bir supernova patlaması o kadar büyüktür ki, galaksisinde bulunan bütün yıldızların toplamından daha çok ışık çıkarabilir. Bunun bir örneği, Yengeç Bulutsusu olarak kalıntılarını gördüğümüz supernova. Bu supernovayı Çinliler 1054’te kaydetmişler. Yıldız yaklaşık beş bin ışık yılı uzakta patlamasına rağmen, aylarca çıplak gözle görülebilmiş; o kadar parlakmış ki, gündüz bile görülebiliyor, geceleri ışığında okunabiliyormuş. Beş yüz ışık yılı uzaklıktaki -yani onda biri uzaklıkta- bir supernova yüz kat daha parlak olacak ve geceyi gerçek anlamda gündüze çevirecektir. Böyle bir patlamanın şiddetini anlamak için Güneş’ten on milyon kat uzak olmasına rağmen, Güneş ışığına rakip olduğunu düşünün. (Bizim Güneşimizin sekiz ışık dakikası uzaklıkta olduğunu hatırlayalım.) Eğer yeterince yakınımızda bir supernova meydana gelmiş ol saydı, Dünya sağlam kalırdı; ama üzerindeki bütün canlıları öldürmeye yetecek miktarda ışınım yayardı. Aslında son zamanlarda öne sürülen bir sava göre, yaklaşık iki milyon yıl önce, Pleyistosen ve Pliyosen bölümleri arasında yaşamış deniz yaratıklarının birer birer ölmesinin nedeni, yakınlardaki Akrep-Erboğa birliğinde oluşan bir süpernovadan gelen kozmik ışın ışınımıdır. Bazı bilimciler gelişmiş hayatın ancak çok fazla yıldız olmayan galaksilerin bulunduğu, “yaşam bölgelerinde” mümkün olduğunu düşünüyor; çünkü daha yoğun bölgelerde supernova gibi fenomenler, gelişebilecek başlangıçların işini bitiriveriyorlar. Her gün evrenin bir yerlerinde ortalama yüzlerce bin supernova patlaması oluyor. Herhangi bir galakside yüz yılda bir supernova meydana geliyor. Ancak bu sadece ortalama. Ne yazık ki -en azından astronomlar için Samanyolu’nda kaydedilen son supernova 1604’te, teleskopun icadından önce gerçekleşmiş.

Galaksimizde gerçekleşmesi beklenen bir sonraki supernovanın öndeki adayı, Koltuk Takımyıldızından Rho. Bizden on bin ışık yılı uzakta olduğu için güvende ve rahatız. Bu, sarı hiperdevler olarak bilinen yıldızlardan biri; Samanyolu’nda bilinen sadece yedi tane sarı hiperdev var. Değişik uluslardan gelen bir astronom ekibi 1993’te bu yıldızı incelemeye başladı. Birkaç yıl içinde yıldızda, belli dönemlerde birkaç yüz derecelik ısı iniş çıkışları olduğu gözlemlendi. Sonra 2000 yılının yazında yıldızın ısısı birden 7000 dereceden, 4 000 derecelere düştü. Bu süre içinde yıldızın atmosferinde titanyum oksit saptandı; bunun büyük bir şok dalgasıyla yıldızın dış kabuğunun bir parçasının kopması yüzünden olduğu düşünülüyor.

Bir supernovada, yıldızın yaşamının sonuna doğru üretilmiş olan ağır elementler, galaksiye döner ve sonraki nesil yıldızlar için hammadde sağlar. Bizim Güneşimiz de bu ağır elementlerden yüzde iki oranında içerir. Güneşimiz, yaklaşık beş milyar yıl önce, önceki supernovaların kalıntılarını taşıyan dönen bir gaz bulutundan oluşmuş, ikinci ya da üçüncü kuşak bir yıldızdır. O buluttaki gazın çoğu ya Güneş’in oluşumuna yaradı ya da patlayıp yok oldu; ancak ağır elementlerin küçük bir bölümü bir araya gelerek, şimdi Güneş’in etrafında dönen, Dünyamız gibi gezegenleri oluşturdu. Mücevherlerimizde kullandığımız altın, nükleer reaktörlerde kullandığımız uranyum, Güneş sistemimiz doğmadan önce ortaya çıkmış süpernovaların kalıntılarıdır!

Dünya yoğunlaşmaya başladığında çok sıcaktı ve atmosferi yoktu. Zamanla soğudu ve kayalardan çıkan gazlardan atmosferi oluştu. Bu ilk atmosfer yaşamımızı sürdürebileceğimiz nitelikte değildi. İçinde oksijen yoktu, ama hidrojen sülfit (çürük yumurtaya kokusunu veren gaz) gibi, bizim için zehirli pek çok gaz bulunuyordu. Yine de, böylesi koşullarda gelişebilen ilkel yaşam biçimleri vardır. Bunların okyanuslarda gelişmiş olduğu düşünülüyor; atomların rasgele birleşmesinden oluşan ve makromoleküller denilen büyük yapıları meydana getirmesi mümkün. Makromoleküller, okyanustaki diğer atomları da bir araya getirme yeteneğine sahip olduklarından, benzer yapıların çoğalmasını sağladılar.

Yani böylece, kendilerini yeniden ürettiler ve çoğaldılar. Bazı durumlarda üretim hataları olacaktı. Bu hatalar çoğunlukla, makro-moleküllerin kendilerini üretememeleriydi ve sonunda yok oldular. Ancak bazı hatalar, kendilerini daha iyi üreten yeni makromoleküllerin ortaya çıkmasına neden oldu. Bu, yeni makromolekülleri daha üstün kıldı ve ilk makromoleküllerin yavaş yavaş yerini aldılar. Böylece başlayan evrim süreci, gittikçe daha karmaşık ve kendini üreten organizmaların gelişmesine yol açtı. İlk ilkel yaşam biçimleri, hidrojen sülfatı da içeren farklı maddeleri tüketiyor ve oksijen salıyorlardı. Bu durum atmosferi yavaş yavaş değiştirdi bugünkü bileşimine getirdi ve balıklar, sürüngenler, memeliler ve sonunda insan gibi daha yüksek yaşam biçimlerinin gelişmesini mümkün kıldı.

XX. yüzyıl, insanın evren hakkındaki görüşlerinin değiştiğini gördü: Evrenin uçsuz bucaksızlığında gezegenimizin önemsizliğini fark ettik; zaman ve uzayın eğri ve ayrılmaz olduğunu, evrenin genişlediğini ve bir başlangıcı olduğunu keşfettik. Evrenin başlangıçta çok sıcak olduğu ve genişlerken soğuduğu düşüncesi Einstein’ın kütleçekimi ve genel görelilik kuramına dayanıyor. Bugün sahip olduğumuz bütün gözlemsel kanıtların birbiriyle uyuşması, bu kuramın büyük zaferidir. Ancak, matematik sonsuz sayıları gerçekten kullanamadığı için, genel görelilik kuramı evrenin büyük patlamayla, evrenin yoğunluğunun ve uzay-zaman eğrilmesinin sonsuz olduğu bir zamanda başladığını öne sürmekle, evrende kuramın kendisini yıkan ya da başarısızlığa uğratan bir noktanın varlığının da kestiriminde bulunuyor. Bu nokta, matematikçilerin tekillik dediği durumun bir örneğidir. Bir kuram sonsuz yoğunluk ve eğrilme gibi tekillikleri öne sürdüğünde, bu durum, kuramın bir şekilde değiştirilmesi gerektiğinin işaretidir. Genel görelilik kuramı, evrenin nasıl başladığını söyleyemediği için tamamlanmamış bir kuramdır.

XX. yüzyılda genel görelilik kuramının yanı sıra, bir başka büyük parçacık kuramı olan kuvantum mekaniği ortaya çıktı. Bu kuram, çok küçük ölçeklerde meydana gelen fenomenlerle ilgileniyor. Büyük patlama modeli bize, ilk evrenin çok çok küçük olduğunu söylüyor; evrenin büyük ölçekli yapışını incelerken bile, kuvantum mekaniğinin küçük ölçekli etkilerini göz ardı etmemiz artık mümkün olamıyor.

Kaynak: Zamanın Daha Kısa Tarihi- Stephen Hawking

PAYLAŞ
Önceki İçerikGenişleyen Evren
Sonraki İçerikDünyayı Değiştiren 10 Bilim Adamı
36 yaşındayım. Yıldız Teknik Harita Mühendisliği mezunuyum. Taşınmaz değerlemesi yapıyorum. Bilim,uzay, tarih,arkeoloji konularına ilgi duyuyorum. Ön Türk Tarihini araştırmaktan keyif alıyorum. Yüzüklerin Efendisi ve Türkler üzerine (Orta Dünya'nın Analizi) kitap çalışmam tamamlandı. Yakın zamanda yayımlanacak.

HENÜZ YORUM YOK

CEVAP VER