Kütleçekimi Kuvantumu

80

Bilimsel kuramların, özellikle de Newton’un kütleçekimi kuramının başarısı, XIX. yüzyılın başında Laplace Markisi’ni, evrenin tümüyle belirlenimci olduğunu savunmaya götürdü. Laplace, evrende olabileceklerle ilgili kestirimde bulunmamızı en azından ilkesel olarak sağlayacak bir dizi bilimsel yasanın olması gerektiğine inanıyordu. Bu yasaların ihtiyaç duyacağı tek veri, evrenin herhangi bir zamandaki eksiksiz durumudur. Buna ilksel koşul ya da sınır koşulu deniyor. (Bir sınır, uzay-zamanda bir sınır anlamına gelebilir; uzaydaki bir sınır koşulu, evrenin dış sınırlarındaki eğer varsa durumudur.) Bir dizi eksiksiz yasaya ve elverişli ilksel koşula ya da sınır koşuluna dayanarak Laplace, evrenin herhangi bir zamandaki durumunu eksiksiz olarak hesaplayabileceğimize inanıyordu.

İlksel koşulların gerekliliği, belki de sezgisel olarak ortadadır; şimdiki durumda söz konusu olan farklı varlık durumlarının gelecekte de farklı durumlara yol açacağı açıktır. Uzayda sınır koşullarına gerek duymak biraz daha belirsiz bir durumdur, ama ilke aynıdır. Fiziksel kuramların temeli olan denklemlerin genelde çok farklı çözümlemeleri olabilir ve kullanılacak çözümlemeyi belirlemek için bir ilksel koşula ya da sınır koşuluna güvenmek gerekir. Bu birazcık, bankadaki hesabınızda büyük miktarlarda hareket olduğunu söylemeye benzer. İflas etmeniz ya da zengin olmanız, sadece hesabınıza yatan ya da çekilen miktarlara değil, hesabınızı açarken ne kadar paranız vardı gibi, bir sınır koşuluna ya da ilksel koşula bağlıdır.

Eğer Laplace haklı olsaydı, evrenin şu andaki verili durumunda, bu yasalar bize hem gelecekte hem de geçmişte evrenin durumunu gösterecekti. Örneğin, Güneş’in ve gezegenlerin verili konumlarına ve hızlarına göre, Güneş sisteminin daha önceki ve daha sonraki durumunu hesaplamak için Newton yasalarını kullanabiliriz. Gezegenlerin durumunda belirlenimcilik oldukça anlaşılır bir durum; nihayetinde astronomlar tutulma gibi olayları çok doğru bir şekilde hesaplıyorlar. Ancak Laplace daha da ileri giderek, insan davranışları da dahil olmak üzere her şeyi yöneten benzer yasalar olduğunu varsaydı.

 

Bilimcilerin gelecekteki bütün eylemlerimizi hesaplamaları gerçekten mümkün mü? Bir bardak suda 1024 (l’den sonra yirmi dört sıfır) molekül vardır. Deneyimlerimizden her bir molekülün durumunu, evrenin aşağı yukarı eksiksiz durumunu, hatta bedenlerimizin durumunu bilmeyi asla umamayız. Ancak evrenin belirlenimci olduğunu söylemek, hesap yapacak beyin gücüne sahip olmasak bile, geleceğimizi önceden kestirebiliriz demektir.

Bu bilimsel belirlenimcilik öğretisine, Tanrı’nın dünyayı uygun gördüğünce yönetme özgürlüğünün elinden alındığını düşünen pek çok kişi kuvvetle karşı çıktı. Ancak öğreti, XX. yüzyılın ilk yıllarına kadar bilimin normal varsayımlarından biri olarak kaldı. Bu inancın terk edilmesi gerektiğini gösteren ilk işaret, İngiliz bilimciler Lord Rayleigh ve Sir James Jeans, yıldız gibi sıcak bir cismin yayması gereken ışınım olan kara cisim ışınımını ölçtüklerinde geldi.

O sıralar inandığımız yasalara göre, sıcak bir cisim her frekansta eşit olan elektromanyetik dalgalar yaymalıydı. Eğer bu doğruysa, görülebilen ışığın tayfındaki her renkte, mikrodalgaların, radyo dalgalarının, X-ışınlarının vs her frekansında eşit miktarda enerji yaymalıydı. Bir dalganın frekansının, dalganın bir saniye içinde aşağı ve yukarı salınımının sayısı, yani bir saniyedeki dalga sayısı olduğunu anımsayalım. Matematiksel olarak, sıcak bir cismin her frekansta eşit dalgalar yayması demek, sıcak cismin saniyede sıfır ve bir milyon dalgalık frekanslarda, saniyede bir milyon ile iki milyon arasındaki frekanslarda, iki milyon ile üç milyon arasındaki frekanslarda (böyle sonsuza kadar gider) hep aynı miktarda ısı yayması demektir. Diyelim ki, sıfır ve bir milyon arasındaki frekansta, bir milyon ve iki milyon arasındaki frekansta dalgalar saniyede bir birimlik enerji yayıyorlar. Bu durumda bütün frekanslarda yayılan enerjinin toplamı 1+ 1+ 1… olarak sonsuza kadar gidecektir. Bir saniyedeki dalgaların sayısı sınırsız olduğundan, enerjilerin toplamı da sınırsız olacaktır. Bu mantığa göre, yayılan enerji toplamı sınırsız olacaktır.

Saçmalığı ortada olan bu sonuçtan kaçınmak için Alman bilimci Max Planck 1900’de, X-ışınlarının ve diğer elektromanyetik dalgaların sadece, kuvantum adını verdiği ayrık paketler halinde yayıldığını öne sürdü. Günümüzde, Bir ışık kuvantumuna foton diyoruz. Işığın frekansı ne kadar yüksekse, içerdiği enerji de o kadar yüksektir. Bu yüzden, herhangi bir rengin ya da frekansın fotonları aynı olsa da, Planck’ın kuramının açıkladığına göre, farklı frekanslardaki fotonlar, taşıdıkları enerji miktarı bakımından farklıdır. Yani kuvantum kuramında herhangi bir rengin en solgun ışığının bile tek bir foton tarafından taşınan ışık rengine bağlı olan bir enerji içeriği vardır. Örneğin, mor ışığın frekansı, kırmızı ışığınkinden iki kat fazla olduğundan, mor ışığın bir kuvantumu, kırmızı ışığın bir kuvantumundan iki kat fazla enerji içeriğine sahiptir. Yani mor ışık enerjisinin mümkün olan en küçük parçası, kırmızı ışık enerjisinin mümkün olan en küçük parçasından iki kat büyüktür.

Peki bu durum kara cisim sorununu nasıl çözer? Bir kara cismin herhangi bir frekansta yayabileceği en küçük miktardaki elektromanyetik enerji, o frekanstaki tek bir foton tarafından taşınan enerjidir. Bir fotonun enerjisi, yüksek frekanslarda daha çoktur. Bu durumda, bir kara cismin yayabileceği en düşük enerji miktarı, yüksek frekanslarda daha çok olacaktır. Yeterince yüksek olan frekanslarda, tek bir kuvantumdaki enerji, o cisimde var olan enerjiden daha çok olacaktır; bu durumda ise hiç ışık yayılmayacak, hiç tükenmeyen toplam bitecektir. Planck’ın kuramında, yüksek frekanslardaki enerji küçültülecek, böylece cismin enerji kaybettiği hız sınırlandırılarak kara cisim sorunu çözülecektir.

Kuvantum varsayımları, sıcak cisimlerden ışınım saliminin gözlemlenmiş hızım çok güzel açıklar; ancak kuramların belirlenimcilikle ilişkisi, Alman bilimci Werner Heisenberg’in o ünlü belirsizlik ilkesini formüle ettiği 1926 yılına kadar fark edilemedi.

Belirsizlik ilkesi, Laplace’ın inancının tersine, doğanın, bilimsel yasaları kullanarak geleceği kestirebilme becerimize sınırlar koyduğunu söyler. Çünkü, bir parçacığın gelecekteki konumunu ve hızını hesaplayabilmek için, onun ilksel durumunun -yani şu andaki konumunun ve hızının- doğru olarak ölçülebilmesi gerekir. Bunu yapmanın en doğrudan yolu, parçacığın üzerine ışık tutmaktır. Işığın bazı dalgalan parçacığa çarparak dağılacaktır. Bu gözlemci tarafından fark edilecek ve parçacığın konumu belirlenebilecektir. Ancak, bir ışığın dalgaboyu sınırlı bir duyarlığa sahiptir; parçacığın konumunu, ışığın dalga tepelerinin arasındaki uzaklıktan daha küçük olan bir hatayla belirleyemeyiz. Bir parçacığın konumunu kesin olarak ölçebilmek için, dalgaboyu kısa olan -yani yüksek frekanslı bir ışık kullanılması gerekir. Planck’ın kuvantum kuramına göre, keyfimize göre küçük miktarda ışık kullanamayız; en azından, yüksek frekanslarda enerjisi yüksek olan, tek bir kuvantum kullanmak zorundayız. Böylece, bir
parçacığın konumunu doğru olarak hesaplamayı ne kadar çok isterseniz, parçacığa yolladığınız ışığın kuvantumu o kadar enerjik olacaktır.

Kuvantum kuramına göre, tek ışık kuvantumu bile parçacığın konumunu bozar; parçacığın hızını önceden kestirilemeyecek bir şekilde değiştirir. Kullandığınız ışığın kuvantumu ne kadar enerjikse, parçanın konumundaki bozulabilirlik de o kadar büyük olacaktır. Parçacığın konumunu belirlemek üzere daha kesin ölçümler yapmak için daha enerjik bir kuvantum kullandığınızda bu, parçacığın hızının daha büyük miktarlarda bozulacağı anlamına gelir. Yani, parçacığın konumunu doğru olarak saptamaya ne kadar çok çabalarsanız, onun hızını o kadar hatalı ölçeceksiniz ya da tam tersi. Heisenberg’in ortaya koyduğuna göre, parçacığın konumundaki belirsizlik çarpı hızındaki belirsizlik çarpı parçacığın kütlesi, asla belli sabit bir nicelikten az olamaz. Örneğin, konumun belirsizliğini yarıya indirirseniz, hızın belirsizliğini iki kat artırmak zorundasınız ya da tersi. Doğa, bu dengeyi kurmamızı sonsuza kadar engeller.

Bu denge ne kadar hatalı olabilir? Bu, yukarıda sözünü ettiğimiz “belirli sabit niceliğin” rakamsal değerine bağlıdır. Bu nicelik, Planck sabiti olarak bilinir ve çok küçük bir sayıdır. Planck sabiti çok küçük olduğundan, dengenin etkileri ve genelde kuvantum kuramı, tıpkı göreliliğin etkileri gibi, günlük yaşamımızda doğrudan fark edilmeyen etkilerdir. (Aslında kuvantum kuramı, modern elektronikler gibi bazı alanlarda yaşamlarımızı etkiler.) Örneğin, bir pingpong topunun yerini bir santimetre içinde bir gramlık bir kütle olarak belirleyebilirsek, hızını, bilmek istediğimizden çok daha büyük bir doğrulukla saptayabiliriz. Ancak, bir elektronun konumunu, aşağı yukarı bir atomun sınırları içinde doğru olarak ölçmek istersek, hızını ancak bir saniyede eksi ya da artı bin kilometre kesinlikte ölçebiliriz ki, bu hiç de kesin bir sonuç olmaz.

Belirsizlik ilkesinin gerektirdiği sınır, parçacığın konumunun ya da hızının hangi yolla ölçülmek istendiğine ya da parçacığın türüne bağlı değildir. Heisenberg’in belirsizlik ilkesi Dünya’nın temel ve kaçınılmaz bir özelliğidir ve Dünya’ya bakış açımızı derinden etkilemiştir. Aradan yetmiş yıldan fazla bir süre geçmesine rağmen, pek çok filozof bu etkileri tam olarak kavrayamamıştır ve hâlâ pek çok tartışmanın konusudur. Belirsizlik ilkesi, Laplace’ın bir bilim kuramı, tümüyle belirlenimci bir evren modeli düşünün sona erdiğinin işaretidir. Eğer evrenin şu andaki konumunu dahi kesin olarak ölçemiyorsak, gelecekteki olayları da kesin olarak tahmin edemeyiz!

Bize benzemeyen ve evreni şimdiki konumunu bozmadan gözlemleyebilen doğaüstü bir varlık için, olayları tümüyle belirleyen bir dizi yasa olduğunu hâlâ düşünebiliriz. Ancak bu türden evren modelleri, biz sıradan ölümlüler için pek ilginç değil. Ockham’ın usturası olarak da bilinen tutumluluk ilkesini benimsemek ve kuramın gözlemlenemeyen bütün unsurlarını kesip atmak en iyisi. Bu yaklaşım Heisenberg, Erwin Schrödinger ve Paul Dirac’ın 1920’de, Newton’un mekaniklerini yeniden gözden geçirerek, belirsizlik ilkesine dayanan ve kuvantum mekaniği denilen yeni bir kuram geliştirmelerine yol açtı. Bu kuramda parçacıkların ayrı, iyi tanımlanmış konumları ve hızları artık yok. Bunun yerine parçacıklar, sadece belirsizlik ilkesinin sınırları içinde tanımlanabilen bir konum ve hız birleşimi olan, kuvantum durumuna sahipler.

Kuvantum mekaniğinin devrimci özelliklerinden biri de, bir gözlem için kesin tek sonuç öngörmemesidir. Bunun yerini ne ölçüde olası olduğunu tek tek belirttiği farklı kestirimler alır. Yani, aynı şekilde başlayan çok sayıda benzer durumu aynı şekilde ölçtüğünüzde, ölçümlerin sonucunun belli sayıda durumlar için A, belli sayıda durumlar için B vb olduğunu görürsünüz. Her ölçümün kesin sonucuna ulaşamasanız da sonuçların yaklaşık kaçta kaçıran A ya da B olacağı kestiriminde bulunabilirsiniz.

Örneğin, hedef tahtasına küçük oklardan birini attığımızı düşünelim. Klasik kuramlara göre yani eski, kuvantum olmayan kuramlara göre ok ya hedefin merkezini bulur ya da kaçırır. Eğer fırlattığınız okun hızını, kütleçekimi gücünü ve benzeri diğer etkenleri biliyorsanız, merkezi bulabilecek misiniz bulamayacak mısınız hesaplayabilirsiniz. Ancak kuvantum kuramı bize bunun yanlış olduğunu, sonucu kesin olarak bilemeyeceğimizi söyler. Kuvantum kuramına göre, okun merkezi bulması kesin olasılıklardan biridir, ama okun hedef tahtasının farklı yerlerine denk gelmesi de sıfır olmayan olasılıklardandır. Hedef tahtası gibi büyük bir nesne için klasik kuram bu durumda Newton yasaları okun tam hedefi vuracağını söyler, biz de bunun olacağını rahatlıkla varsayarız. En azından, (kuvantum kuramına göre) hedefi bulamama şansı o kadar düşüktür ki, evrenin sonuna kadar oku tamamen aynı şekilde atmayı sürdürsek bile, okun hedefi şaştığım asla göremeyecek olmamız da olasılıklardan biridir. Ancak atomik ölçekte durum farklıdır. Bir ok, hedefi bulma olasılığı yüzde 90, hedefte başka bir yeri bulma olasılığı yüzde 5, hedef tahtasını tümüyle kaçırma olasılığı yüzde 5 olan tek atomdan yapılmıştır. Bunların hangisinin gerçekleşeceğini önceden söyleyemezsiniz. Bütün söyleyebileceğiniz, eğer deneyi pek çok kez tekrarlarsanız, her
yüz atışta ortalama doksan kez okun hedefi bulacağıdır.

Böylece kuvantum mekaniği bilime, kaçınılmaz bir önceden bilinemezlik ya da gelişigüzellik unsuru ekler. Einstein bu düşüncelere, geliştirilmesinde önemli bir yere sahip olmasına rağmen, şiddetle karşı çıktı. Aslında, kuvantum kuramına katkıları yüzünden Nobel Ödülü aldı. Yine de, evreni rastlantının yönettiğini asla kabul etmedi; bu konudaki duyguları o ünlü “Tanrı zar atmaz” ifadesinde özetleniyordu.

Daha önce söylediğimiz gibi bir bilimsel kurama geçerlilik kazandıran, bir deneyin sonuçlarının kestiriminde bulunabilmesidir. Kuvantum kuramı yeteneklerimizi sınırlar. Bu, kuvantum kuramı bilimi sınırlıyor demek midir? Eğer bilim ilerliyorsa, bizim onu sürdürme yolumuzu doğa belirlemeli. Bu durumda doğa, kestirimle ne demek istediğimizi yeniden tanımlamamızı istiyor: Bir deneyin sonucunun kesin olan bir kestiriminde bulunamayabiliriz, ama deneyi birçok kez tekrarlayarak, kuvantum kuramının kestirimde bulunduğu olasılıklar dahilinde ortaya çıkan farklı sonuçlan doğrulayabiliriz. Bu nedenle, belirsizlik ilkesine rağmen, Dünya’nın fizik yasaları tarafından yönetildiği inancından vazgeçmemize gerek yoktur. Aslında çoğu bilimci, deneyle mükemmel örtüştüğü için kuvantum mekaniğini kabule hevesliydiler.

Heisenberg’in belirsizlik ilkesinin en önemli saptamalarından birine göre, parçacıklar bazı durumlarda dalgalar gibi hareket eder. Görmüş olduğumuz gibi, parçacıkların kesin bir konumu yoktur, ama belli bir olasılık dağılımında “yayılmış” dururlar. Aynı şekilde, ışık dalgalardan oluşmasına rağmen, Planck’ın kuvantum varsayımı bize ışığın bazı durumlarda parçacıklardan oluşmuş gibi göründüğünü söyler; ışık sadece paketler ya da kuvantum olarak yayılabilir ya da soğurulabilir. Aslında kuvantum mekaniğinin dayandığı bu tümüyle yeni matematik türü, gerçek dünyayı parçacık ya da dalga kavramlarıyla açıklamaz. Bazı durumlarda parçacıkları dalga olarak düşünmek, bazı durumlarda ise dalgalan parçacık olarak düşünmek yardımcı olabilir, ancak bu tarz düşünme sadece kolaylıktır. Fizikçilerin, kuvantum mekaniğinde dalgalar ve parçacıklar arasında ikilik var derken kastettikleri budur.

Kuvantum mekaniğinde dalgamsı işleyişin önemli bir sonucu da, iki parçacık takımı arasındaki girişimin gözlenebilmesidir. Normalde girişim, dalgalara ait bir fenomen olarak düşünülür; yani dalgalar çarpıştığında bir dalganın tepesi, diğer dalganın çukuruyla çakışabilir ki bu durumda dalgaların uyumsuz olduğu söylenir. Bu olduğunda iki dalga, beklenildiği üzere birbirlerine eklenip daha güçlü bir dalga oluşturacaklarına, birbirlerini yok ederler. Işığın durumundaki girişimin bildik örneği, sabun köpüklerinin üzerinde görülen renklerdir. Bunun nedeni, köpüğü oluşturan ince su tabakasının iki yanından yansıyan ışıktır. Beyaz ışık, hepsi farklı dalgaboylarında ya da renkte olan ışık dalgalarından oluşur. Belli dalgaboylarında, köpüğün bir tarafından yansıyan dalgaların tepesi, diğer taraftan yansıyan dalgaların çukurlarına denk gelir. Bu dalgaboylarının karşılığı olan renkler yansıyan ışıkta bulunmadığı için, ışık renklenmiş görünür.

Ancak kuvantum kuramına göre, kuvantum mekaniğiyle öne sürülen ikilik gereği, girişim parçacıklar için de söz konusudur. Bunun iyi bilinen örneği, çift yarık denilen deneydir. Üzerinde birbirine paralel iki dar yarık olan bir bölme ince bir duvar düşünelim. Bu yarıklardan parçacıklar geçirildiğinde ne olacağını düşünmeden önce, yarıkların üzerine ışık tutulduğunda ne olacağını görelim. Bölmenin bir yanına belli bir renkte (yani belli bir dalgaboyunda) bir ışık kaynağı koyalım. Işık büyük ölçüde bölmeyi aydınlatacak, ancak az bir kısmı da yarıklardan geçecektir. Şimdi de bölmenin arka tarafına bir perde koyduğumuzu düşünelim. Bu perdenin üzerindeki herhangi bir noktaya, iki yarıktan da ışık dalgaları gelecektir. Ancak genelde, kaynaktan gelen ışığın bir yarıktan geçerken aldığı yol ile diğer yarıktan geçerken aldığı yol birbirinden farklı olacaktır. Kat edilen mesafe farklı olduğu için, iki yarıktan geçen ışık dalgaları perdeye ulaştıklarında birbirleriyle uyumlu olmayacaklardır. Bazı yerlerde bir dalganın çukuru, diğer dalganın tepesine denk gelecek ve dalgalar birbirlerini yok edecektir; bazı yerlerde ise dalgaların tepeleri ve çukurları denk gelecek ve dalgalar birbirlerini güçlendirecektir; çoğu yerde de durum bu ikisinin arasında olacaktır. Sonuçta, ışığın ve karanlığın kendine özgü bir deseni olacaktır.

Işık kaynağı yerine, belli bir hıza sahip olan bir parçacık kaynağı, örneğin elektronlar kullanıldığında, tam olarak aynı deseni elde etmek görülmemiş bir durumdur. (Kuvantum kuramına göre, elektronlar belli bir hıza sahipse, ona karşılık gelen dalganın dalgaboyları da aynı olacaktır.) Diyelim ki bölmenin üzerinde tek yarık var ve bölmeye elektronlar yollamaya başladık. Elektronların çoğu bölme tarafından durdurulacak, ancak bir kısmı yarıktan geçerek arkadaki perdeye ulaşacaktır. Bölmede ikinci bir yarık açmakla, perdeye ulaşan elektron sayısının artacağını varsaymak mantıklı görünebilir. Fakat ikinci yangı açtığımızda, perdeye ulaşan elektronların sayısı bazı yerlerde artarken, bazı yerlerde azalacaktır; elektronlar parçacık gibi değil, dalga gibi hareket ederek birbirlerini engelleyecektir.

Şimdi de elektronları yarıklardan teker teker gönderdiğimizi düşünelim. Yine de girişim gerçekleşir mi? Yarıklardan birinden geçen bir elektronun, girişimin ortaya çıkardığı modeli oluşturmayacağı düşünülebilir. Gerçekte, elektronlar teker teker gönderildiğinde bile, girişimden kaynaklanan desen perdede belirir. Bu durumda her elektron, iki yarıktan aynı anda geçer ve kendisiyle girişimi oluşturur!

Parçacıklar arasındaki girişim fenomeninin, bizi ve çevremizdeki her şeyi meydana getiren temel unsurun, atomların yapısını anlamamızda çok önemli bir yeri vardır. XX. yüzyılın başlarında atomların, Güneş’in etrafında dönen gezegenler gibi, merkezde pozitif elektrik taşıyan bir çekirdeğin etrafında dönen, (negatif elektrik yüklü) elektronlardan oluştuğu düşünülüyordu. Pozitif ve negatif elektrik arasındaki çekimin elektronları yörüngelerinde tuttuğu sanılıyordu; tıpkı Güneş ve gezegenler arasındaki kütleçekiminin gezegenleri yörüngelerinde tutması gibi. Kuvantum mekaniğinden önceki klasik mekanik ve elektrik yasalarına göre bu düşüncenin sorunu, bu şekilde dönen elektronların ışınım çıkardığını varsaymasıydı. Bu durum elektronların enerji kaybetmelerine ve böylece çekirdekle çarpışıncaya kadar döne döne düşmelerine yol açıyordu. Bu da atomun, aslında bütün maddenin, hızla çok yüksek bir yoğunluk durumuna düşmesi demekti ki, böyle bir şeyin olmadığı çok açıktı!

Danimarkalı bilimci Niels Bohr 1913’te bu soruna kısmi bir çözüm buldu. Elektronların muhtemelen merkezdeki çekirdeğin etrafında herhangi bir uzaklıkta değil, sadece belirlenmiş bir uzaklıkta döndüğünü önerdi. Bu belirlenmiş uzaklıkta yalnızca bir ya da iki elektronun dönebileceği düşünüldüğünde çökme sorunu çözülebilirdi, çünkü iç yörüngelerin sınırlı sayısı bir kez dolduğunda, elektronlar çekirdeğe daha fazla yaklaşamazlardı. Bu model en basit atomun yapısını, çekirdeği etrafında dönen bir tek elektronu olan hidrojeni çok iyi açıklıyor. Ancak bu modeli daha karmaşık yapıdaki atomlara nasıl uygulayabileceğimiz açık değildi. Dahası, sınırlı sayıda olmasına izin verilmiş yörüngeler takımı düşüncesi, yalnızca bir tür yara bandına benziyor. Bu matematiksel olarak işleyen bir düzen, ancak hiç kimse doğanın neden bu şekilde hareket ettiğini ya da simgelediği daha derindeki yasayı eğer varsa anlayamıyordu. Yeni kuvantum mekaniği kuramı bu zorluğu çözdü. Çekirdek etrafında dönen bir elektronun, hızına bağlı bir dalgaboyuna sahip bir dalga olarak düşünülebileceğini ortaya koydu. Bohr’un varsaydığı gibi, bir çekirdeğin etrafında, belli bir uzaklıkta dönen bir dalga düşünün. Bazı yörüngelerin çevresi, elektronun dalgaboyunun tam katına (kesirli sayıların tersi olarak) denk geliyordu. Bu yörüngelerde dalgaların tepesi her dönüşte aynı konumda olacak, böylece dalgalar birbirlerini güçlendirecektir. Bu yörüngeler, Bohr’un izinli yörüngelerine karşılık gelecektir. Ancak, çevresi dalga boylarının tam katına denk gelmeyen yörüngelerde, elektron döndükçe her dalganın tepesi er geç, diğer dalganın çukuru tarafından yok edilecektir. Bu yörüngeler izinli olmayacaktır. Bohr’un izinli ve yasaklı yörüngeler yasası böylece bir açıklamaya kavuşmuştu.

Parçacık-dalga ikiliğini hayal etmenin güzel bir yolu, Amerikalı bilimci Richard Feynman tarafından ortaya konulan, çoklu geçmiş fikridir. Bu yaklaşımda parçacığın, klasik, kuvantum olmayan kuramlarda olduğu gibi, uzay-zaman içerisinde tek bir geçmişi ya da yolu yoktur. Tersine, parçacığın A noktasından B noktasına mümkün olan her yoldan gittiği varsayılır. Feynman, A ile B arasındaki her yola bir çift sayı vermiştir. Bir tanesi dalganın genişliğini ya da büyüklüğünü gösterir. Diğeri de evresini ya da çevrimdeki konumunu (yani dalganın tepesi mi, çukuru mu ya da ikisinin arasında bir yer mi olduğunu) gösterir. Bir parçacığın A’dan B’ye gitme olasılığı, A ile B’yi birbirine bağlayan bütün yollardaki dalgaların toplamı alınarak bulunur. Genelde, birbirine yalan yollar karşılaştırıldığında, çevrim içindeki konumlar ya da evreler büyük farklılık gösterecektir. Bu, birbirine komşu yollardaki dalgaların neredeyse tümüyle birbirlerini yok edecekleri anlamına gelir. Yine de, birbirine yakın bazı yollar arasındaki evreler çok farklı olmayacak ve bu yollardaki dalgalar birbirlerini yok etmeyecektir. Böyle yollar Bohr’un izinli yörüngelerinin karşılığıdır.

Somut matematiksel biçimdeki bu düşüncelerle, daha karmaşık atomların izinli yörüngeleri, hatta birden fazla çekirdek etrafında dönen elektronların bir arada tuttuğu atomlardan oluşan moleküllerin yörüngeleri nispeten doğru olarak hesaplanır. Moleküllerin yapısı ve birbirleriyle tepkimeleri bütün kimya ve biyolojinin temelini oluşturduğundan, ilkesel olarak kuvantum mekaniği, çevremizde gördüğümüz hemen her şey için belirsizlik ilkesinin çizdiği sınırlar içerisinde kestirimde bulunabilmemizi sağlar. (Ancak uygulamada, tek bir elektronu bulunan en basit atom olan hidrojeninki dışında, karmaşık atomlarla ilgili denklemleri çözemeyiz ve daha karmaşık atomlar ve moleküller için tahminleri ve bilgisayarları kullanırız.)

Kuvantum kuramı önemli bir başarının sahibidir, çağdaş bilimin ve teknolojinin temelini oluşturur. Televizyon ve bilgisayar gibi elektronik aygıtların temel unsurları olan transistorların ve integrallerin işleyişini yönettiği gibi, çağdaş kimya ve biyolojinin de temelidir. Kuvantum mekaniğinin fizik biliminde henüz gerektiği gibi dahil olamadığı tek alan, kütleçekimi ve evrenin büyük ölçekli yapısıdır. Daha önce de belirttiğimiz gibi, Einstein’ın genel görelilik kuramı, diğer kuramlarla tutarlı olmak için dahi, kuvantum mekaniklerinin belirsizlik ilkesini hesaba katmaz.

Genel görelilik kuramının değiştirilmesi gerektiğini biliyoruz. Klasik genel görelilik kuramı (yani kuvantum olmayan kuram) sonsuz yoğunluk noktaları tekillikler- kestirimiyle, kendi çöküşüyle ilgili kestirimde bulunmuştur; tıpkı klasik mekaniklerin, kara cisimlerin sonsuz enerji yaydığı ya da atomların sonsuz yoğunluğa düşeceği önermesiyle kendi çöküşünün kestiriminde bulunması gibi. Klasik mekanikte olduğu gibi, klasik genel görelilik kuramım kuvantum kuramıyla bağdaştırarak yani kütleçekimi kuvantum kuramını yaratarak bu kabul edilemez tekillikleri elemek istiyoruz.

Genel görelilik kuramı yanlışsa, neden bütün deneyler şimdiye kadar bu kuramı destekledi? Gözlemlerimizde henüz herhangi bir çelişki fark edemeyişimizin nedeni, normalde deneyimlediğimiz bütün kütleçekimi alanlarının çok zayıf olmasıdır. Ancak görmüş olduğumuz gibi, evrendeki bütün madde ve enerji çok küçük bir hacme sıkıştırıldığında, kütleçekimi kuvveti çok güçlü olacaktır. Böylesi güçlü alanların varlığı söz konusu olduğunda, kuvantum kuramının etkisi de çok önem kazanır.

Kütleçekimi kuvantum kuramına henüz sahip olmasak da, böyle bir kuramın sahip olması gereken bazı özellikleri biliyoruz. Bunlardan biri, kuvantum kuramım çoklu geçmişin kavramlarıyla formüle eden Feynman’ın önermesiyle uyumlu olmasıdır. İkinci özellik ise, Einstein’ın, eğri uzay zamanın kütleçekimi alanının göstergesi olduğu düşüncesidir; eğri bir uzayda en yakındaki nesneyi düz bir yolla izlemeye çalışan parçacıkların yolu, uzay-zaman düz olmadığı için, kütleçekimi alam tarafından eğilmiş gibi görünür. Herhangi bir nihai kuramını bu düşünceyi içermesi gerektiğine inanıyoruz. Feynman’ın çoklu geçmiş fikrini, Einstein’ın kütleçekimi düşüncesine uyguladığımızda, bir parçacığın tarihi artık, bütün evrenin geçmişini temsil eden tam ve kapalı bir uzay-zamandır. Klasik kütleçekimi kuramında, evrenin gidebileceği mümkün olan iki yol vardır: evren ya sonsuz bir zaman boyunca var olmuştur ya da geçmişteki sonlu bir zamanın tekilliğinde başlamıştır. Daha önce tartıştığımız nedenler yüzünden, evrenin sonsuzdan beri var olduğunu düşünmüyoruz. Ancak, eğer bir başlangıcı varsa, klasik genel görelilik kuramına göre, Einstein’ın denklemlerinin hangi sonucunun evrenimizi açıkladığını bilmek için, ilksel durumunu, yani tam olarak evrenin nasıl başladığım bilmek zorundayız. Tanrı başlangıçta doğanın yasalarını belirlemiş olabilir, ama sonrasında evreni bu yasalara uygun şekilde evrimleşmeye bırakmış ve artık evrene karışmıyormuş gibi görünüyor. Tanrı evrenin ilksel durumunu ya da düzenini nasıl seçmiştir? Zamanın başlangıcındaki sınır koşullan neydi? klasik genel görelilik kuramında bu bir sorundur, çünkü bu kuram evrenin başlangıcıyla birlikte çöker.

Öte yandan kütleçekimi kuvantum kuramında ortaya çıkan yeni bir olasılık, eğer doğruysa, bu sorunun çaresi olabilir. Kuvantum kuramında uzay-zamanın sınırlı boyutlara sahip olması, ancak bir sınır ya da kenar oluşturabilecek tekilliklerin bulunmamasıyla mümkündür. Uzay-zaman dünyanın yüzeyi gibidir, yalnız fazladan iki boyutu daha vardır. Daha önce değindiğimiz gibi, dünyanın yüzeyinde belli bir yöne doğru yolculuğu sürdürürseniz, geçilmez bir sınıra denk gelmez ya da kenardan aşağıya düşmezsiniz; bir tekilliğe rastlamadan sonunda başladığınız noktaya dönersiniz. Eğer durum buysa, kütleçekimi kuvantum kuramı, bilimin yasalarını yıkan tekilliklerin olmadığı yeni bir olasılığı ortaya çıkarıyor.

Uzay-zamanın bir sınırı yoksa sınırdaki bir hareketi tanımlamaya evrenin ilksel durumunu bilmeye gerek de yoktur. Uzay-zamanın Tanrı’nın kanıtı olarak kabul edilecek bir sınırı ya da uzay-zaman için sınır koşulları oluşturacak yeni bir yasası yoktur. “Evrenin sınır koşulu, bir sınırı olmamasıdır” diyebiliriz. Evren tümüyle kendine yeterlidir ve dışındaki herhangi bir şeyden etkilenmemektedir. Ne yaratılmıştır ne de yok olacaktır. Evren sadece vardır. Evrenin bir başlangıcı olduğuna inandığımız sürece, bir yaratıcının rolü açıklık kazanır. Ancak evren gerçekten kendine yeterliyse, bir sınırı ya da kenarı yoksa bir başlangıcı ya da sonu yoksa “Bir yaratıcının rolü ne?” sorusunun yanıtı o kadar da açık olmaz.

Kaynak: Stephen Hawking- Zamanın Daha Kısa Tarihi

PAYLAŞ
Önceki İçerikDünyayı Değiştiren 10 Bilim Adamı
Sonraki İçerikTakvim Nasıl Ortaya Çıktı?
36 yaşındayım. Yıldız Teknik Harita Mühendisliği mezunuyum. Taşınmaz değerlemesi yapıyorum. Bilim,uzay, tarih,arkeoloji konularına ilgi duyuyorum. Ön Türk Tarihini araştırmaktan keyif alıyorum. Yüzüklerin Efendisi ve Türkler üzerine (Orta Dünya'nın Analizi) kitap çalışmam tamamlandı. Yakın zamanda yayımlanacak.

HENÜZ YORUM YOK

CEVAP VER